Thermal-aware DC IR-drop co-analysis using non-conformal domain decomposition methods

نویسندگان

  • YANG SHAO
  • ZHEN PENG
چکیده

Almost all practical engineering applications are multi-physics in nature, and various physical phenomena usually interact and couple with each other. For instance, the resistivity of most conducting metals increases linearly with increases in the surrounding temperature resulting from Joule heating by electrical currents flowing through conductors. Therefore, in order to accurately characterize the performance of high-power integrated circuits (ICs), packages and printed circuit boards (PCBs), it is essential to account for both electrical and thermal effects and the intimate couplings between them. In this paper, we present non-conformal, non-overlapping domain decomposition methods (DDMs) for thermal-aware direct current (DC) IR drop co-analysis of high-power chippackage-PCBs. Here, IR stands for the finite resistivity (R) of metals and current (I) drawn off from the power/ground planes. The proposed DDM starts by partitioning the composite device into inhomogeneous sub-regions with temperature-dependent material properties. Subsequently, each sub-domain is meshed independently according to its own characteristic features. As a consequence, the troublesome mesh-generation task for complex ICs can be greatly subdued. The proposed thermal-aware DC IR drop co-analysis applies the non-conformal DDM for both conduction and steady-state heattransfer analyses with a two-way coupling between them. Numerical examples, including an IC package and a chip-package-PCB, demonstrate the flexibility and potential of the proposed thermal-aware DC IR-drop co-analysis using non-conformal DDMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction

Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...

متن کامل

Thermal-aware P/G TSV planning for IR drop reduction in 3D ICs

With the leakage-thermal dependency, the increasing on-chip temperature in 3D designs has serious impact on IR drop due to the increased wire resistance and increased leakage current. Therefore, it is necessary to consider Power/Ground network design with thermal effects in 3D designs. Though Power/ Ground (P/G) TSV can help to relieve the IR drop violation by vertically connecting on-chip P/G ...

متن کامل

Fischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex

The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...

متن کامل

Preparation and Thermal Decomposition Kinetics of Copper(II) Complex with 1-(6-Hydroxynaphthalen-2-yl)butane-1,3-dione

A complex of Cu(II) with 1-(6-HydroxyNaphthalen-2-yl) Butane-1,3-Dione (HNBD) was synthesized and characterized by elemental analysis, IR, UV and DTA-TG-DTG techniques.    IR spectra as well as UV-visible absorption measurements indicated that Cu(II) ion was coordinated to the HNBD ligand. The TG-DTA-DTG curves showed that thermal decomposition o...

متن کامل

Synthesis of Single-Crystalline Octahedral Co3O4 with Solid-State Thermal Decomposition

In this paper, single crystalline octahedral Co3O4 with dimensions about 100–500 nm and smooth surface has been prepared by solid-state thermal decomposition of cobalt(II) Schiff base complex Co((3,4-MeO-ba)2 en)Cl2 as new precursor at 450ºC under air atmosphere for 3.5 h. Surface morphology of the products were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012